Graphs and Genomes
Michael Schatz

Bioinformatics Lecture 3
Quantitative Biology 2013




Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M
0 A B C . | X Y N
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Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M

0 A B C o | X Y N
0 0 I 2 3 X | X+l N
D I
E 2
F 3
U U
V | U+l
M M

Top row and first column are easy: it takes L-edits to transform and
empty string into a length L string



Q = min

Dynamic Programming Matrix

Compute the optimal alignment of “ABC

...XY.N” and “DEF...UV...M”

0 A B C X Y N

0 0 I 2 3 X | X+ N

D I

E 2

F 3

U U Y g

V | U+l B <

M M
“Up” + | a+1 ABCUp . Left Diagonal
“Lofer + | B+1 . XY= ABC.... ABC...XY
“Diagonal” +O/I Y+1 DEF oao [ QUV DEF.[%Q DEF.YQ .UV
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Graphs

e Nodes

— People, Proteins, Genes, Neurons, Sequences, Numbers, ...

* Edges
— Ais connected to B
— Alis related to B
— A regulates B
— A precedes B
— A interacts with B
— A activates B



Graph Types

Directed
Acyclic
List Tree Graph

Complete




Representing Graphs
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Adjacency Matrix
Good for dense graphs
Fast, Fixed storage: N2 bits

__|A/B/CIDE[FIG
I

Adjacency List
Good for sparse graphs
Compact storage: 4 bytes/edge

A:C,D,E D: F

B:D, E E:F

C:F, G G:
Edge List

Easy, good if you (mostly) need
to iterate through the edges
8 bytes / edge

A,C B,C C,F

AD B,D C,G

AE B.E D,F
E.F F.G

Tools
Matlab: hiop://www.mathworls.com/

Graphviz: hitp://www.graphviz.org/
Gephi: hitps://gephiorg/
Cytoscape: hitp://www.cytoscape.org/

digraph G {
A->B
B->C
A->C
}

dot —Tpdf -og.pdf g.dot
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o
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Network Characteristics

C. elegans D. melanogaster S. cerevisiae
# Nodes 2646 7464 4965
# Edges 4037 22831 17536
Avg. / Max Degree | 3.0 / 187 6.1 /178 7.0 / 283
# Components 109 66 32
Largest Component | 2386 7335 4906
Diameter 14 12 11
Avg. Shortest Path | 4.8 4.4 4.1
Data Sources 2H

8x2H, 2xTAP, SUS

Degree
Distributions

2x2H, TAP-MS

gggggg

Small World: Avg. Shortest Path between nodes is small

Scale Free: Power law distribution of degree — preferential attachment




Network Motifs

Network Motif
— Simple graph of connections

— Exhaustively enumerate all
possible 1,2, 3, ... k node
motifs

Statistical Significance

— Compare frequency of a
particular network motif in
a real network as compared
to a randomized network

Certain motifs are

“characteristic features’” of
the network

Network Nodes  Edges | Mreal Nrand*SD  Zscore | Nreal Nrand* SD Zscore | Nreal Nrand*SD  Zscore
Gene regulation —X Feed- X I Bi-fan
(transcription) \'% forward
Y loop
\ Z w
>z
E. coli 424 519 40 7%3 10 203 4712 13
S. cerevisige® 685 1,052 ] 70 11+4 14 1812 30040 41
Neurons — X Feed- X X Bi-fan X Bi-
\Z forward ¥ N parallel
\E’{ loop 7 o YN UZ
>z w
C. eleganst 252 509 125 90 + 10 3.7 127 55+13 53 227 35+ 10 20
Food webs X Three Bi-
\'Z chain ¥ N parallel
Y Y, Z
v N ¥
Z w
Little Rock 92 984 3219 3120 +50 21 7295 2220210 25
Ythan 83 391 1182 1020 20 7.2 1357 230+ 50 23
St. Martin 42 205 469 450 £ 10 NS 382 130 £20 12
Chesapeake 31 67 80 82+4 NS 26 5+2 8
Coachella 29 243 279 235+12 3.6 181 80+20 5
Skipwith 25 189 184 150+7 55 397 80+25 13
B. Brook 25 104 181 130+ 7 7.4 267 30+7 32
Electronic circuits X Feed- X Y Bi-fan 2 X Ny Bi-
(forward logic chips) \g forward > g | Y z parallel
loop Y
v Z W wt
Z
515850 10,383 14,240 | 424 2+2 285 1040 1+1 1200 480 2+1 335
$38584 20,717 34,204 | 413 10+3 120 1739 6+2 800 711 9x2 320
$38417 23,843 33,661 | 612 3+2 400 2404 1+1 2550 531 2%2 340
$9234 5,844 8,197 | 211 2%1 140 754 1£1 1050 209 1£1 200
513207 8,651 11,831 J 403 2+1 225 4445 1+1 4950 264 21 200
Electronic circuits X Three X Y Bi-fan X—>Y Four-
(digital fractional multipliers) ﬂ \ node node
feedback feedback
Y&— Z loop Z w 7 <—W loop
5208 122 189 10 1+1 9 4 1+1 3.8 L} 11 5
5420 252 399 20 1+1 18 10 11 10 11 1+1 11
58383 512 819 40 1+4 38 22 1 20 23 1.+ 25
World Wide Web X Feedback X Fully X Uplinked
$ with two Z’ N connected ﬂ N mutual
5 mutual Y>> 7 triad Y<—> z dyad
dyads
Z
nd.edu§ 325,729  1.46e6 | 1.1e5  2e3 * 1e2 800 6.8¢6  Sed*de2 15,000 1.2e6  le4+2e2 5000

Network Motifs: Simple Building Blocks of Complex Networks

Milo et al (2002) Science. 298:824-827




Modularity

* Community structure ,

— Densely connected groups of vertices,
with only sparser connections between
groups

— Reveals the structure of large-scale
network data sets

* Modularity

— The number of edges falling within groups
minus the expected number in an
equivalent network with edges placed at

random 1 kik;
g _ =— DA = =) (s;s; + 1)
— Larger positive values => Stronger Q= 4m i 9m SiSj
community structure ij
— Optimal assignment determined by _7 _ _ T T
computing the eigenvector of the Normalization Adjacency Indicates
modularity matrix factor matrix same group

Modularity and community structure in networks. Rc?nq[or?dpmb-
Newman ME (2006) PNAS. 103(23) 8577-8582 (product of degrees)



Kevin Bacon and Bipartite Graphs

Find the shortest
path from
Kevin Bacon
to
Jason Lee

Breadth First Search: -
Vi e A -

4 hops

Bacon Distance:




BFS
BFS(start, stop)

/I initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
cur = list.begin()
if (cur == stop)
print cur.dist;
else
foreach child in cur.children
if (child.dist == -1)
child.dist = cur.dist+1
list.addEnd(child)

[e»)

7B7
1C1
D

J

E
F

mo O

IO 1>

E,F.L
D,E,F.L,G,H
E.F.L.G,H,l
F.L,G,H,IJ
L,G,H,l,J,X
G,H,1,J,X,0
H,1,J,X,0

1,J,X,0,M
J,X,0,M
X,0,M,N
O,M,N
M,N

[How many nodes will it visit?]
[What's the running time?]

[What happens for disconnected
components?]



BFS
BFS(start, stop)

/I initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
cur = list.begin()
if (cur == stop)
print cur.dist;
else
foreach child in cur.children
if (child.dist == -1)
child.dist = cur.dist+1
list.addEnd(child)

(e}

1B7
1C1
D

J

E
F

mo O

IO 1>

: L
D,E,F.L,G,H
E.F.L,G,H,l

F.L,G,H,IJ

L,G,H,l,J,X
G,H,1,J,X,0
H,1,J,X,0

1,J,X,0,M
J,X,0,M
X,0,M,N
O,M,N
M,N

DFS

DFS(start, stop)
/[ initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
cur = list.end()
if (cur == stop)
print cur.dist;
else
foreach child in cur.children
if (child.dist == -1)
child.dist = cur.dist+|
list.addEnd(child)

[e)

A,

A,
A,

— o> >

B.C

B,G,H
B,.G,M

[vs)




Eulerian Cycle Problem

* Seven Bridges of Konigsberg

— Find a cycle that visits every edge exactly once

find th le?
[Can you find the cycle?] bioalgorithms.info



Euler Theorem

* A graph is balanced if for every vertex the
number of incoming edges equals to the

number of outgoing edges:
in(v)=out(v)

* Theorem: A connected graph is Eulerian if and
only if each of its vertices is balanced.

d=h

@0
()

bioalgorithms.info




Algorithm for Constructing an Eulerian Cycle

a. Start with an arbitrary vertex
v and form an arbitrary cycle O
with unused edges until a dead \
end is reached. Since the
graph is Eulerian this dead end
is necessarily the starting

point, i.e., vertex v.

bioalgorithms.info



Algorithm for Constructing an Eulerian Cycle (cont’ d)

b. If cycle from (a) above is not

an Eulerian cycle, it must R = A"
| \--__-
contain a vertex w, which o )
W oy
has untraversed edges. @

Perform step (a) again, using
vertex w as the starting
point. Once again, we will .
end up in the starting vertex

W.

bioalgorithms.info



Algorithm for Constructing an Eulerian Cycle (cont’ d)

c. Combine the cycles

from (a) and (b) into O N
. . )
a single cycle and g
iterate step (b). - N\
\__\ B ----./‘
(<)

bioalgorithms.info



Counting Eulerian Cycles

m ARERCRD

@“"@“—’@ or
( > ARCRERD
C

Generally an exponential number of compatible sequences
— Value computed by application of the BEST theorem (Hutchinson, 1975)

-1
W(G, t) = (detL){ TT (r — 1)!}{ 1 aw!}
ueV (u,v)EE
L = n x n matrix with r-a,, along the diagonal and -a,, in entry uv

r, = d*(u)*+ 1 if u=t, or d*(u) otherwise

a,, = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads.
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.



BFS and TSP

* BFS computes the shortest path between a
pair of nodes in O(|E[) = O(|N|?)

* What if we wanted to compute the shortest
path visiting every node once!

— Traveling Salesman Problem

ABDCA:4+2+5+3 = |4
ACDBA: 3+5+2+4 = | 4*
ABCDA: 4+|+5+] = ||
ADCBA: | +5+1+4 = | |*
ACBDA: 3+1+2+1 =7
ADBCA: [+2+[+3=7 *




Greedy Search

11

12

50



Greedy Search

Greedy Search o 8 o
cur=graph.randNode() 11
while (!done) S . 10
next=cur.getNextClosest() 12
L C_ o
50

Greedy: ABDCA =5+8+10+50=73
Optimal: ACBDA =5+11+10+12 = 38

Greedy finds the global optimum only when
|. Greedy Choice: Local is correct without reconsideration

2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins



TSP Complexity

* No fast solution

— Knowing optimal tour through n cities doesn't
seem to help much for n+1 cities

[How many possible tours for n cities?]

* Extensive searching is the only
provably correct algorithm

— Brute Force: O(n!)
e ~20 cities max
« 20!'=24x10'8




Branch-and-Bound

* Abort on suboptimal solutions
as soon as possible
— ADBECA = | +2+2+2+3 = |0
— ABDE = 4+2+30> 10
— ADE=1+30> 10
— AED = 1+30> 10

* Performance Heuristic
— Always gives the optimal answer
— Doesn't always help performance, but often does

— Current TSP record holder:
* 85,900 cities [When not?]

- 85900! = | 0386526



TSP and NP-complete

* TSP is one of many extremely hard
problems of the class NP-complete

— Extensive searching is the only way to
find an exact solution

— Often have to settle for approx. solution

* WARNING: Many biological problems are in this class

— Find a tour the visits every node once (Genome Assembly)

— Find the smallest set of vertices covering the edges (Essential Genes)
— Find the largest clique in the graph (Protein Complexes)

— Find the highest mutual information encoding scheme (Neurobiology)
— Find the best set of moves in tetris

— http://en.wikipedia.org/wiki/List _of NP-complete_problems
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What is your genome?

Like Dickens, we must computationally reconstruct a genome from short fragments



Assembly Applications
* Novel genomes j\-,t f‘,% ug
GENOME 10K. §5

* Metagenomes

* Sequencing assays AN
— Structural variations {0 %
: : 5 \i Y- /§

— Transcript assembly A S



Assembling a Genome

|. Shear & Sequence DNA - = —
-~ T =

2. Construct assembly graph from overlapping reads

..AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA..

3. Simplify assembly graph

> 0 —> 0 —> 0 —>0—> 00— 0 > 0 —/ S

e N A~ \a

o o (e] O

4. Detangle graph with long reads, mates, and other links

SN



Shortest Common Superstring

Given: S={s,, ..., s, }

Problem: Find minimal length superstring of S

S; 5,83 = CAC CACC 15
s, CACCC $;,5:,8,= CAC GGGTGC14

s, CCGGGTGC $5,5,,83= CCGGGTG ACC 15
s; CCACC $,,5,,8; = CCGGGTG C 13
$3,5,8,=C GGGTGC 12

$3,5,,8;,= CCA ACCC 15

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH



Ingredients for a good assembly

Coverage

dog N50 /

dog me;

™
|

100k
|

panda N50 +

panda mean +

10k
|

1k

= 1000 bp
= 710 bp
m 250 bp
= 100 bp
B 52bp
m 30bp

Expected Contig Length

100
|

Read Coverage

High coverage is required

—  Oversample the genome to ensure
every base is sequenced with long
overlaps between reads

—  Biased coverage will also fragment
assembly

Read Length

‘O\\\\—_y/d
oo ®
o® S

,/\\

Reads & mates must be longer
than the repeats

—  Short reads will have false overlaps
forming hairball assembly graphs

—  With long enough reads, assemble
entire chromosomes into contigs

Quality

Uy _u

v v
[ )
L) L)
L T
v vy vy ‘Hl
[ 11 11
) T T

Errors obscure overlaps

—  Reads are assembled by finding
kmers shared in pair of reads

—  High error rate requires very short
seeds, increasing complexity and
forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly
Schatz MC,Witkowski, McCombie,WR (2012) Genome Biology. 12:243




Typical contig coverage

Imagine raindrops on a sidewalk



num balls

25

20

15

10

Balls in Bins | x

Frequency
201
1

100
1

Histogram of balls in each bin
Total balls: 1000 Empty bins: 361

o -

0 5 10 15
Balls in Bins balls in bin
Total balls: 1000
I T | I | l
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num balls

25

20

15

10

Histogram of balls in each bin
Total balls: 2000 Empty bins: 142

8 -
B I I . B . 2
allS 1N DINS 4X
) g 10 2
balls in bin
Balls in Bins
Total balls: 2000
|
| | | | | |
0 200 400 600 800 1000

bin id



num balls

25

20

15

10

Balls in Bins 4x

Balls in Bins
Total balls: 4000

Histogram of balls in each bin
Total balls: 4000 Empty bins: 17

Frequency
201
!

100
1

o

balls in bin

0 200 400

bin id

600 800 1000



num balls

25

20

15

10

Balls in Bins 8x

Balls in Bins
Total balls: 8000

Frequency

100

=)

Histogram of balls in each bin
Total balls: 8000 Empty bins: 1

balls in bin

400

bin id

600

800

1000



Lander Waterman Statistics

3500

3000

L = read length
T = minimum overlap ]
G = genome size -
N = number of reads @
c = coverage (NL / G)
o =1-TIL -

300000 -

cooooe -

E(#contigs) = Ne—<?
E(contig size) = L(ec® = ) /c+ | - O @

Contig length

Genomic mapping by fingerprinting random clones: a mathematical analysis
Lander ES,Waterman MS (1988) Genomics. 2(3):231-239



de Bruijn Graph Construction

D, = (ViE)
* V =All length-k subfragments (k <)
* E = Directed edges between consecutive subfragments
* Nodes overlap by k-1 words

Original Fragment Directed Edge

It was the best of It was the best =2 was the best of

Locally constructed graph reveals the global sequence structure
* Overlaps between sequences implicitly computed

de Bruijn, 1946
|Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001



It was the best

N

was the best of

Sy

de Bruijn Graph Assembly

the best of times,

Sy

best of times, it

N, |

of times, it was

S

it was the worst

times, it was the

After graph construction,
try to simplify the graph as
much as possible

Sy

was the worst of

S

the worst of times,

S

worst of times, it

it was the age

S

was the age of

the age of foolishness

the age of wisdom,

™SS

age of wisdom, it

S

of wisdom, it was

>SS

wisdom, it was the




Overlap all pairs of sequences

overlap (19 bases)

A
- N

..AGCCTAGACCTACA G
— CTTATCCGGT..

—

% identity = 18/19 % = 94.7%

overlap - region of similarity between reads

The assembler screens merges based on:
* length of overlap

* % identity in overlap region

* maximum overhang size

In practice, don’t attempt to overlap all pairs, but require the pair to

share an exact seed
[How do we score the overlap?]



Reducing overlaps to unitigs

Chunk Graph

* Because we oversample the genome, most overlaps are redundant.

* Remove all “transitively inferred” overlaps

— If A overlaps B, and B overlaps C, the extra overlap between A and C can be transitively implied

Toward simplifying and accurately formulating fragment assembly.
Myers, EW (1995) ] Comp Bio. 2(2):275-90.



Unitigging / Unipathing

After simplification and correction, compress graph
down to its non-branching initial contigs

Y ¢¢

— Aka “unitigs”, “unipaths”

— Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats

>0 >0 >0 —>>0—>>0>0—>06—>0 - —> o
el N
(¢} ]
el N
Q [¢)
e “a ——e
] o
AN y'd
@ (V]
AN V'd
@ (5]
AN X




Errors in the graph

Clip Tips Pop Bubbles

was the worst of times,

was the worst of times,

was the worst of tymes,

was the worst of tymes,

times, it was the age

the worst of times, it

tymes, it was the age

the worst of tymes, /' tymes,
was the worst of was the worst of it was the age
the worst of times, times,

~a

worst of times, it

~

(Chaisson, 2009)




Repetitive regions

Repeat Type Definition / Example

Low-complexity DNA / Microsatellites (b,b,...b )N where | <k <6 2%
CACACACACACACACACACA

SINEs (Short Interspersed Nuclear Alu sequence (~280 bp) 13%

Elements) Mariner elements (~80 bp)

LINEs (Long Interspersed Nuclear ~500 — 5,000 bp 21%

Elements)

LTR (long terminal repeat) Ty | -copia, Ty3-gypsy, Pao-BEL 8%

retrotransposons (~100 — 5,000 bp)

Other DNA transposons 3%

Gene families & segmental duplications 4%

* Over 50% of mammalian genomes are repetitive

— Large plant genomes tend to be even worse
— Wheat: 16 Gbp; Pine: 24 Gbp 0



Repeats and Coverage Statistics

A R, B R, Ry + R,

* If n reads are a uniform random sample of the genome of length G,
we expect k=n A /G reads to start in a region of length A.

— If we see many more reads than k (if the arrival rate is > A) , it is likely to be
a collapsed repeat

—-An
An/G)' &

k n—k
Pr(X —copy) = | (XA) (G"XA) A =t 2o g kA g
kN G G Pr(2 - copy) (2An/G) ) G G
k!

The fragment assembly string graph
Myers, EW (2005) Bioinformatics. 2 | (suppl 2):ii79-85.



Paired-end and Mate-pairs

Paired-end sequencing
* Read one end of the molecule, flip, and read the other end

* Generate pair of reads separated by up to 500bp with inward orientation

300bp > s

Mate-pair sequencing

* Circularize long molecules (I1-10kbp), shear into fragments, & sequence
* Mate failures create short paired-end reads

10kbp

2x100 @ ~10kbp (outies)

> <€
10kbp
circle
2x100 @ 300bp (innies)
> <€




Scaffolding

* Initial contigs (aka unipaths, unitigs)
terminate at
— Coverage gaps: especially extreme GC
— Conflicts: errors, repeat boundaries

* Use mate-pairs to resolve correct order
through assembly graph
— Place sequence to satisfy the mate constraints

— Mates through repeat nodes are tangled

* Final scaffold may have internal gaps called
sequencing gaps
— We know the order, orientation, and spacing,
but just not the bases. Fill with Ns instead

“
*
*
*
*
*
*
* .
o ]
" -
* -
o L
* -
. .
*
* -
“ 8
.
.
L]
S N— s
.
.
.
" ‘
- ’$‘
L] *
L ] ‘.
- *
L] ”
LA "
. *
L +*
DR
o *
o o
’0‘0

A RBRCRD

[y a— ~— e



N50 size

Def: 50% of the genome 1s 1n contigs as large as the N50 value

Example: | Mbp genome 50%
4

T e
st o O

N50 size = 30 kbp
(300k+ 100k+45k+45k+30k = 520k >= 500kbp)

Note:
N5O0 values are only meaningful to compare when base genome
size is the same in all cases



Publishing a genome!

17
15 16

o S

Y ° 8
\,“Jé: O@ﬁm 2
9 @@ I L 2
° S \ /
After assembly: - gt 1L gy J
@\“ N L — 2
. . A W LT 1,%,
* Validation o BT e -y,
@ Q‘\\ LS,
- WGA 5 & '

 BLAST
« CEGMA
* Gene Finding .

* Repeat mask
* RNA-seq

[ ] *_Seq
. o o o >

o TE/CACTA :
e Publish! © Fgﬁ,fhg;,:@

exon
megascaffold



Assembly Validation

Automatically scan an assembly to locate
misassembly signatures for further analysis
and correction

Assembly-validation pipeline
|.  Evaluate Mate Pairs & Libraries
2.  Evaluate Read Alignments
3. Evaluate Read Breakpoints
4.  Analyze Depth of Coverage

It was the best

of times, it ™ l M
\ it was ta\é)v@of

times, i

of times,
it was the )
it was the <

age of

Genome Assembly forensics: finding the elusive mis-assembly.
Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55.



Mate-Happiness: asmQC

* Excision: Skip reads between flanking repeats

S —

D N

— Misassembly: Compressed Mates, Missing Mates

— Truth

P2



C/E Statistic

The presence of individual compressed or expanded
mates is rare but expected.

Do the inserts spanning a given position differ from
the rest of the library?

— Flag large differences as potential misassemblies

— Even if each individual mate is “happy”

Compute the statistic at all positions
— (Local Mean — Global Mean) / Scaling Factor

Introduced by Jim Yorke’ s group at UMD



Frequency

Forensics

o
o —
~—

40 60 60 100
| |

20
|

Normal Library
Count=10000, Mean=4000, SD=400

1000 <0u0 3000 !!!! !!!! !!LD

Insert Size

Sampling the Genome

8 inserts: 3kb-6kb

Local Mean: 4048

C/E Stat: (4048-4000) = +0.33
(400 / \8)

Near O indicates overall happiness
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8 inserts: 3.2kb-6kb

Local Mean: 4461

C/E Stat: (4461-4000) = +3.26
(400 / \8)

C/E Stat = 3.0 indicates Expansion
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Insert Size

C/E-Statistic: Compression

Okb 2kb 4kb 6kb

8 inserts: 3.2 kb-4.8kb

Local Mean: 3488

C/E Stat: (3488-4000) =
(400 / \8)

C/E Stat < -3.0 indicates
Compression




Assembly Forensics

|

Hawkeye & AMOS:Visualizing and assessing the quality of genome assemblies
Schatz, M.C. et al. (201 1) Briefings in Bioinformatics.



Whole Genome Alighment
with MUMmer

Slides Courtesy of Adam M. Phillippy
amp@umics.umd.edu




Goal of WGA

* For two genomes, A and B, find a mapping from
each position in A to its corresponding
position in B

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGGTAGGCTATTAAACGGGGTGAGGAGCGTTGGCATAGCA



Not so fast...

* Genome A may have insertions, deletions,
translocations, inversions, duplications or SNPs
with respect toB (sometimes all of the above)

CCGGTAGGATATTAAACGGGGTGAGGAGCGTTGGCATAGCA

CCGCTAGGCTATTAAAACCCCGGAGGAG. . . .GGCTGAGCA



WGA visualization

* How can we visualize whole genome alighments!?

* With an alighment dot plot

— N x M matrix

* Leti = position in genome A

* Letj = position in genome B

* Fill cell (i) if A;shows similarity to B,

— A perfect alignment between A and B would completely fill
the positive diagonal
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Insertion into Reference
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 Different structural
variation types /
misassemblies will be
apparent by their
pattern of breakpoints

* Most breakpoints will
be at or near repeats

« Things quickly get
complicated in real
genomes



Seed and Extend

How can we quickly align two genomes!?

FIND all exact matches (MUMSs) of minimum length
CLUSTER consistent MUMSs
EXTEND alignments




WGA example with nucmer

* Yersina pestis CO92 vs. Yersina pestis KIM
— High nucleotide similarity, 99.86%
— Extensive genome shuffling
— Highly repetitive

nucmer -maxmatch C092.fasta KIM. fasta
-maxmatch Find maximal exact matches (MEMs)

delta-filter -m out.delta > out.filter.m

-m Many-to-many mapping

show-coords -r out.delta.m > out.coords
-r Sort alignments by reference position

dnadiff out.delta.m

Construct catalog of sequence variations

mummerplot --layout out.delta.m
-—-layout Nice layout for multi-fasta files






Assembly Summary

Assembly quality depends on

I. Coverage: low coverage is mathematically hopeless

2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats

4. Error rate: errors reduce coverage, obscure true overlaps

* Assembly is a hierarchical, starting from individual reads, build high
confidence contigs/unitigs, incorporate the mates to build scaffolds

— Extensive error correction is the key to getting the best assembly possible
from a given data set

* Watch out for collapsed repeats & other misassemblies

— Globally/Locally reassemble data from scratch with better parameters &
stitch the 2 assemblies together



Thank You

http://schatzlab.cshl.edu/teaching/
@mike_schatz



